Metal Hydride Reductions of endo-Tricyclo[5,2,1,0^{2,6}]deca-4,8-dien-3-one (endo-Dicyclopentadienone)

By WENDELL L. DILLING* and RAYMOND A. PLEPYS

(Edgar C. Britton Research Laboratory, The Dow Chemical Company, Midland, Michigan 48640)

Summary Aluminium hydride, lithium tri-t-butoxyaluminium hydride, and sodium borohydride reduce specifically the carbonyl group, the double bond, and both the carbonyl group and the double bond, respectively, of a conjugated cyclopentenone, while lithium aluminium hydride gives all three products in varying amounts depending on the reaction conditions.

WE report several remarkably specific metal hydride reductions of the $\alpha\beta$ -unsaturated ketone (1)¹ as well as some factors which influence the course of the lithium aluminium hydride reduction of (1). These results are probably applicable to other conjugated cyclopentenone derivatives.²

Reduction of the ketone (1) with aluminium hydride, lithium tri-t-butoxyaluminium hydride, and sodium borohydride gave either exclusively or mainly the allylic alcohol (2), the dihydro-ketone (3), and the dihydro-alcohol (4), respectively. Reduction of the ketone (1) with $LiAlH_4$ gave mainly carbonyl-reduced product (2) along with varying amounts of (3) and (4) depending on the reaction conditions. These results are summarized in the Table.

Woodward and Katz^{1d} have reported previously the lithium aluminium hydride (0.060 M in ether) reduction of the ketone (1) to the allylic alcohol (2) in 71% yield. The structures of the ketone (3) (m.p. 100-103°) and dihydroalcohol (4) (m.p. 134.5-137.5°) were determined by i.r. n.m.r., and high-resolution mass spectroscopy. Further structural evidence for (3) and (4) was provided by lithium tri-t-butoxyaluminium hydride reduction of the ketone (3) to (4) and re-conversion of the alcohol (4) into (3) by Jones oxidation.5

Tentative reaction paths to account for the results given in the Table are shown. Evidence consistent with formation of a carbon-aluminium bond in (8) was obtained by carrying out the reduction of (1) with lithium aluminium deuteride. Work-up with H_2O gave the alcohol (4) which contained two deuterium atoms per molecule, while work-up with D_oO led to incorporation of three deuterium atoms.[†] In both cases n.m.r. analysis indicated that one of the deuterium atoms was on C-3 while the others were on one or more of the secondary carbon atoms, presumably C-4 and C-5. Further discussion of the mechanism and full spectral data will be presented in the full publication.

Product composition from metal hydride reductions of endo-tricyclo [5,2,1,0^{2,6}]deca-4,8-dien-3-one (1)

Reducing agent and conditions ^a						Overall vield, %	Prod	uct distributi (3)	on % (4)
AlH _a (3 LiAlH ₄ + AlCl _a) ^b in Et _a O ^c						76	100	d	d
Li(O-Bu ^t , AlH (LiAlH, + 3 Bu ^t OH) ^e in Et ₂ O ^e						70	100	83	16
NaBH, in MeOHe						721	g	g	100
LiAlH ₄ (0.017 м) in Et ₂ O ^h (normal addition) ^c						89	. 97	i	3
$LiAlH_4$ (0.087 M) in Et_2O^h (normal addition) ^c	••	••	••	••		94	65	17	18
$LiAlH_4$ (0.078 M) in Et_2Oh (inverse addition) ^j	••	••	••	••	••	96	74	26	1

^a More than two equivalents of hydride per mole of ketone (1) were used in all experiments except that with 0.017 M-LiAlH, where one equivalent was used. Reactions carried out either at 0° or ca. 25° for 0.5—several hr. b Prepared according to procedure of Jorgenson.³
e Ketone (1) added to hydride solution. d Less than 2% by g.l.c. analysis. e Prepared according to the procedure of Brown and McFarlin⁴ t The trialkylborate of (4) was also isolated in 8% yield. e Probably less than 5% formed. ^h The initial ketone (1) concentration was 0.067 m. ⁱ Less than 1% by g.l.c. analysis. J Hydride solution added dropwise over 1 hr. to ketone (1) solution.

(Received, January 28th, 1969; Com. 121.)

† The O-deuterium was washed out with H_aO.

¹ (a) H Hock and F. Depke, Chem. Ber., 1951, 84, 356; (b) K. Alder and F. H. Flock, *ibid.*, 1954, 87, 1916; (c) M. Rosenblum, J. Amer. Chem. Soc., 1957, 79, 3179; (d) R. B. Woodward and T. J. Katz, Tetrahedron, 1959, 5, 70.

² H.C. Brown and H.M. Hess have observed similar results for the hydride reductions of cyclopent-2-enone and *endo*-tricyclo[5,2,1,0^{2,6}]dec-4-en-3-one; private communication.

⁸ M. J. Jorgenson, Tetrahedron Letters, 1962, 559.
 ⁴ H. C. Brown and R. F. McFarlin, J. Amer. Chem. Soc., 1958, 80, 5372.
 ⁵ A. Bowers, T. G. Halsall, E. R. H. Jones, and A. J. Lenin, J. Chem. Soc., 1953, 2548.